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Abstract. We study the electronic eigenstates on two- and three-dimensional quasiperiodic
lattices using a tight-binding Hamiltonian in the vertex model. In particular, we analyse how
a quasiperiodic lattice influences the decay form and the self-similar structure of the wave
functions. The investigation of the earlier-suggested power-law localization is performed by
calculating participation numbers and the structural entropy of the wave function. We also
present results for the multifractal analysis of the eigenstates by a standard box-counting method.
The eigenstates of the two-dimensional Penrose lattice display multifractal character. In contrast,
most eigenstates of the three-dimensional Amman–Kramer lattice are shown to be extended;
localized states occur only in the band tails, where the spectrum appears to be fractal.

1. Introduction

Numerical investigations of the electronic eigenstates on the Fibonacci lattice, a 1D
correspondence of quasicrystals [1], suggest that all of the eigenstates are critical, i.e. neither
extended all over the lattice as are the Bloch states, nor exponentially localized as are,
e.g. the strongly localized states in the Anderson model of localization. It was further
shown [2] that the decay of the envelope of the wave function follows a power law and the
wave function itself possesses a multifractal structure. The critical character of these wave
functions has been related to the competition of the absence of periodicity, which leads to
localized wave functions, and the repetitiveness due to Conway’s theorem, which causes
resonances between equivalent local configurations. Conway’s theorem [3] states that in a
quasicrystal a given local pattern in a region of some diameterl will be repeated within a
distance of two diameters 2l.

Studies of the electronic structure of 2D and 3D quasiperiodic lattices are usually based
on a tight-binding model. Various lattices can be derived from a tiling with fat and thin
rhombuses [3] in 2D for the Penrose lattice (PL), or oblate and prolate rhombohedra
[4] in 3D, giving the so-called Amman–Kramer lattice (AKL). In the case of the vertex
(centre) model, atomic orbitals are placed on the vertices (in the centre) of each rhombus
or rhombohedron and an electron is allowed to hop between neighbouring orbitals. Using a
real-space renormalization-group theory it was argued [5, 6] that in all quasiperiodic lattices
which fulfil Conway’s theorem the wave functions should show a power-law localization.

For the Penrose lattice (PL) similar results have been obtained numerically [7–10], but
mathematically rigorous results are only available for some exact eigenstates located at
particular energies.

First, it is known that in the thermodynamic limit the nearest-neighbour tight-binding
models have degenerate eigenstates, called confined states and string states [9, 11–14]. These
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are strongly localized and their degeneracy is due to Conway’s theorem. But they are not
really a characteristic property of quasicrystals in themselves, since they are a consequence
of the special local topology [9, 14]. Similar spatially confined states and string states have
been found also in the AKL [15].

In the vertex model of the PL, a theory [9] based on frustration ideas for a renormalized
lattice predicts a change in the nature of the localization properties. It is supposed to change
from delocalized states above a certain energy to fractal states below that energy which are
localized in specific regions in order to reduce frustration due to amplitude variations [9].
However, in the PL a finite gap separates the spatially confined states in the band centre
from the remaining states [9, 14]. Moreover, the existence of the confined states strongly
depends on the Hamiltonian. Therefore it may be an oversimplification to conclude that
other wave functions have the same character.

The second rigorous result is that one can construct a tight-binding Hamiltonian so that
certain multifractal wave functions become its eigenstates by setting long-range transfer
energies according to a complex rule [16]. This procedure can be applied to an infinite
number of multifractal wave functions, but since this procedure is quite artificial, it is not
clear whether multifractal eigenfunctions exist in other simple models, such as nearest-
neighbour hopping models. Using the vertex model, Sutherland [17] derived an indexing
rule for the vertices by defining two kinds of vector field on a PL. Then, by appropriately
choosing the on-site potentials at the vertices the exact self-similar ground-state wave
function could be obtained, showing critical, non-normalizable, and multifractal properties.

In the AKL, much less is known than in the PL about spatially confined and about
multifractal states. It is our aim to characterize electronic states in the PL and the AKL
by means of the participation ratio and the singularity spectrum. These concepts have
been extensively applied in the study of the localization behaviour of electronic states in
disordered systems described by the Anderson model of localization [18, 19, 27, 28].

In a recent paper [10] we have shown, by numerical investigation of the localization
properties for the electronic eigenstates in the vertex model of the PL and the AKL, that
the underlying quasiperiodic lattice causes a localization of comparable strength to that due
to the weak disorder in the Anderson model [18] but with a different effect on the various
eigenstates in the PL. As in the Anderson model, the influence decreases on changing from
two to three dimensions. Most of the states in the AKL do not show localization but rather
the behaviour of extended states. The purpose of the present paper is to investigate the
decay form and the possibility of a multifractal structure of the wave function in the PL
and AKL.

2. The model

The construction of the quasiperiodic lattices is based on the grid method described by
de Bruijn [20]. In order to be able to apply periodic boundary conditions, we approximate
the golden meanτ = (

√
5 + 1)/2 by the ratio of two subsequent Fibonacci numbers

F0 = 0, F1 = 1 andFn+1 = Fn+Fn−1 with limn→∞(Fn+1/Fn) = limn→∞ τn = τ. Then the
matching rules of the PL are violated only for two edges [7]. The system sizes of various
periodic approximants which can be constructed in this way are presented in table 1. The
resulting unit cell is a fat rhombus in 2D and a cube in 3D.

We use the so-called vertex model together with a tight-binding Hamiltonian. In this
model an s orbital is placed at every corner (vertex) of a rhombus or rhombohedron and
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only transfer integrals along the edges (bonds) are considered:

H =
∑
k

|k〉εk〈k| +
∑
k,m

|k〉Vkm〈m|. (1)

Here the site energies are chosen asεk = 0, and the nearest-neighbour transfer integrals
or hopping matrix elements areVkm = 1 for all pairs of vertices connected by a bond
and Vkm = 0 otherwise. In the Anderson model of localization, disorder is introduced
into the Hamiltonian (1) by randomizing the site energiesεk. We have investigated [21]
the influence of such an energetic disorder on the localization properties of the AKL and
found that already a relatively weak disorder deletes all characteristics of the quasicrystals
in comparison with square or simple cubic lattices. In the present paper we use vanishingly
small disorder for numerical simplification only (see below), and we compare our results
concerning the localization behaviour of the electronic states in the quasicrystals with the
respective results for energetically disordered square and simple cubic lattices.

Table 1. The number of lattice sitesN for the various periodic approximants(Fn+1, Fn) of the
PL and the AKL.

n (Fn+1, Fn) N (PL) N (AKL)

0 (1, 0) 4 8
1 (1, 1) 11 32
2 (2, 1) 29 136
3 (3, 2) 76 576
4 (5, 3) 199 2440
5 (8, 5) 521 10 336
6 (13, 8) 1364 43 784
7 (21, 13) 3571 185 472
8 (34, 21) 9349
9 (55, 34) 24 476

10 (89, 55) 64 079
11 (144, 89) 167 761

We employ the Householder method for a direct numerical diagonalization of the
Hamiltonian for the computation of the eigenstates in lattices with less thanN = 11 000
sites, and the Lanczos algorithm [22] for bigger systems. The Lanczos algorithm is
especially suited for large sparse matrices as given by the Hamiltonian above. In order
to simplify the use of the Lanczos algorithm, the site energiesεk in equation (1) were
chosen at random from a box distribution of very small width,W = 10−5. By this trick we
avoid numerical degeneracies. Such a small energetic disorder has visible effects only on
the degenerate states in the band centre for which the degeneracy is lifted and the confined
states appear in a straightforward way. A detailed explanation can be found in our recent
article [14].

In figures 1 and 2 two eigenstates in the largest investigated periodic approximant
(Fn+1, Fn) = (144, 89) of the PL are presented to allow us to visualize examples of the
multifractal states proposed for quasiperiodic lattices of dimensionD > 1 [5, 6]. The
figures demonstrate the curdling of the wave functions which is a characteristic feature of
multifractal entities: clusters and voids of all sizes occur. In figure 1 regular ring structures
can be found repeatedly. But it must be stressed that these are not confined states, because
all of these rings belong to one single eigenstate. In figure 2 the probability density is more
evenly distributed; the quasicrystalline symmetry of the underlying lattice is much less
obvious than in figure 1. Nevertheless the curdling is clear also in this case, but a larger
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Figure 1. The probability densityρ of an eigenstate at an energyE = 0.171 in the periodic
approximant(144, 89) of a PL with small energetic disorder,W = 10−5. Every site with
probability density larger than average is indicated by a circle. For empty circles the density is
ρ > 1/N and for filled onesρ > 2/N .
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Figure 2. The probability densityρ of an eigenstate at an energyE = 0.901 in the periodic
approximant(144, 89) of a PL with small energetic disorder,W = 10−5. Every site with
probability density larger than average is indicated by a circle. For empty circles the density is
ρ > 1/N and for filled onesρ > 2/N .
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Figure 3. A histogram of the DOS of the approximant (8, 5) of the AKL. For comparison the
DOS of a simple cubic lattice is shown by a dashed line.
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Figure 4. The integrated DOS of the approximant (8, 5) of the AKL.

value of the respective fractal dimensions can be expected. Of course, the multifractality
cannot be concluded from a visual inspection of these pictures, but multifractality is already
suggested by these plots, which are very similar to the respective plots for Anderson-
localized wave functions [27–29]. A detailed quantitative analysis which is necessary to
determine the multifractal properties will be presented in section 5.

3. The density of states of the AKL

To get an overview over the properties of the quasicrystalline lattices investigated, we have
first determined the density of states (DOS) for the larger approximants. As the DOS of
the vertex model of the PL with its characteristic band-centre peak, which is due to the
degenerate confined states and separated from the rest of the spectrum by a finite gap, is
well known, we do not present our results for the PL here.
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The DOS of the AKL in figure 3 shows three different regimes: a broad maximum
around the centre, distinct shoulders in the energy range±E ∈ (1.7, 3.4) and a tail in
which distinct gaps occur which are not all distinguishable in the histogram of figure 3.
Overall, the shape of the DOS is rather similar to the DOS of the simple cubic lattice as
indicated in figure 3. A comparison with the DOS of the smaller approximants (not shown
here) allows us to conclude that the DOS becomes smoother in the band centre and around
the shoulders with increasing size of the approximants. We note that in contrast to the 9.8%
degenerate states of the PL, only very few degenerate states occur in the AKL. We have
found two degenerate states in the approximant(5, 3) and six in the approximant(8, 5) at
E = 0. In contrast to the PL, in the AKL the degenerate states are not separated from the
rest of the spectrum by a finite gap.

Ε Ε+δ

(3,2)
(5,3)
(8,5)

(3,2)
(5,3)
(8,5)

(3,2)
(5,3)
(8,5)

Figure 5. The eigenvalue spectrum of various approximants of the AKL in the centre (top), the
shoulders (middle), and the tails (bottom) of the DOS. In each case 100 eigenvalues are indicated
in the energy ranges beginning atE = −1.2,−3.0 and−6.6, respectively. The interval width
δ is adjusted so that the average density is the same in each case. Specifically, from top to
bottom,δ = 0.06, 0.24, 1.09, and 0.09, 0.46, 1.65, and 1.0, 2.3, 4.2.

Due to the relatively small number of states, it is not appropriate to reduce the width
of the bins of the histogram in figure 3 further, so a detailed analysis of possible gaps
in the spectrum is difficult. Therefore, in figure 4 we present the respective integrated
DOS in which the band-centre regime and the shoulders can be distinguished due to the
varying steepness of the curve. In the tails a close inspection reveals indeed several gaps.
In order to investigate the changes of the spectrum in the hierarchy of the approximants,
in figure 5 we plot parts of the spectrum in the three regimes distinguished. In order to
compensate the effect of the significantly different densities for the different approximants,
we have chosen different energy scales for the different approximants. (Using the same
energy scale, we obtain very large gaps for the smaller approximants; the positioning of
these gaps is not retained in any obvious characteristic way in the larger approximant.) In
the band centre the spectrum in figure 5 shows a rather homogeneous behaviour already for
the smaller approximants. In the shoulder regime the smaller approximants display gaps in
the spectrum, which, however, are filled with increasing size of the approximants. In this
regime, it appears probable that the spectrum becomes even more homogeneous for larger
system size. In contrast, the gaps in the tail region appear to survive even in the larger
approximants, although the gap size decreases according to the increasing DOS. Here the
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spectrum appears to be fractal. Unfortunately, the system sizes investigated are too small
to allow a more detailed analysis and investigation of the question of whether the spectrum
in this energy range is singular continuous and whether the eigenstates are critical. From
the present data we can only conclude that a characteristic change occurs around±E = 3.4
in the spectrum. A more detailed analysis based on extensive large-scale computations is
planned for the future.

4. Power-law localization

4.1. Participation numbers

To study the localization properties of an eigenstate|9j 〉 =
∑

n ψnj |n〉 of the Hamiltonian
(1) we determine the mean fourth power of the amplitude of the wave function [18] in site
representation:

P−1(Ej ) =
∫

dDr |9j(r)|4 =
N∑
n=1

ψ4
nj . (2)

P is called participation number because it is a measure of the number of sites that contribute
significantly to a state of given eigenenergyEj . The corresponding fractionp = P/N of
all of the states is called the participation ratio. For the approximant (8, 5) of the AKL
the participation ratios are shown in figure 6. The three different regimes discussed for
the DOS can be identified in figure 6 as well. In the centre and in the shoulders of the
DOS the participation ratios of various eigenstates do not differ very much. Only small
statistical fluctuations occur, except atE = 0 where some rather small values ofp are found
which correspond to the above-mentioned confined states. In the tails of the DOS larger
fluctuations can be observed; on average the values of the participation ratio are smaller
than in the band centre. The states appear to be grouped at certain energies with a distinct
spread of the participation numbers within the groups. The gaps found in the DOS can also
be identified here. A comparison with the respective plots for other approximants did not
yield more information, because the system sizes are too small to allow definite conclusions
to be reached for the individual eigenstates as discussed above.

Figure 6. The participation ratiop = P/N of all of the states of the approximant (8, 5) of the
AKL, determined by the Lanczos algorithm for a disorderW = 0.002. Note the data point at
±Emax = 6.6 with pmax = 0.685.

On averaging the results within a small energy interval, however, a more quantitative
analysis of the participation numbers is possible. It is based on the powerβ of the
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dependence of the participation number on the system size:

P ∝ Nβ (3)

which can be used to characterize the localization behaviour of the states.β vanishes for
localized states once they fit into a sample of a given size, whileβ = 1 for states uniformly
extended over the whole sample. In order to explain the proportionality (3) for other values
of β one can assume that the wave function or rather its envelope falls off as an inverse
power of the distance9(r) ∝ r−α. Normalizing these wave functions on a finite sample of
sizeN = LD we get

P−1 =
(∫ L

ε

dr rD−194+ C1

)/(∫ L

ε

dr rD−192+ C2

)2

∝ LD−4α + C ′1
(LD−2α + C ′2)2

(4)

where the constantsC contain the contributions of some small volumeεD at the origin
where9 formally diverges. This volume does not characterize the localization behaviour.
Taking exponents in the rangeD/4< α < D/2 we obtain for largeL

P ∝ L2D−4α or β = 2− 4
α

D
. (5)

For smaller values ofα the wave function9 is not normalizable; for larger values ofα the
wave function appears so strongly localized thatP ≈ constant andβ = 0.

Figure 7. The participation numberP versus system sizeN for the eigenstate of the lowest
energyE = −4.234 in the PL. The values are calculated for periodic approximants with
periodic (�), antiperiodic (4) and open (◦) boundary conditions, and for finite clusters with
open boundary conditions (•).

To calculateβ we used finite clusters of the quasiperiodic structure with open boundary
conditions. In this way we are not restricted to the few sample sizes which can be realized
(see table 1) by the periodic approximants. In figure 7 the proportionality (3) is shown for
the eigenstate of lowest eigenenergy in the PL as an example. This state has a significantly
larger participation number than all of the other states. A state with the same behaviour
has been observed for the AKL (compare figure 6). Due to its extreme behaviour, we have
investigated the scaling of this state separately. Figure 7 demonstrates how well the scaling
(3) is obeyed and it also confirms that the results do not depend on the boundary conditions,
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nor do they depend on the use of finite clusters instead of the periodic approximants: the
absolute values ofP change slightly, but the exponentβ, i.e. the steepness of the lines in
figure 7, does not change. For the subsequent analysis typically 36 different samples in
2D and 25 in 3D withN ∈ [400, 4000] have been evaluated, so a good fit of equation (3)
to the data was possible. The resulting values ofβ for the eigenstates in the 2D PL and
the 3D AKL are shown in figures 8 and 9, respectively. The vertical error bars are due to
the standard deviation of a mean least-squares fit. The horizontal bars indicate the energy
interval from which the respective eigenstates were evaluated. Except for the eigenfunction
at the extreme energy presented in figure 7, a computation of the scaling exponentsβ

for individual eigenstates is numerically not possible from our data due to the statistical
fluctuations. Such a computation would require significantly larger samples. However,
figure 6 has demonstrated that the participation numbers of the eigenstates in small energy
intervals do not differ significantly in most cases, so the derived scaling exponents can
reasonably be expected to be representative.

Figure 8. The exponentβ for the scaling of the participation number in equation (3) as a
function of the energyE for the eigenstates of the PL with open boundary conditions. The
right-hand scale gives the exponentα of the power-law decay of the wave functions according
to equation (5). The participation numbers have been averaged over an energy interval1E = 0.1
for 36 systems with 400< N < 4000.

Our calculations show that the localization properties of the eigenstates in 2D are
different to those in the Anderson model. The exponentβ in figure 8 indicates the most
localized states to be around the centre of the spectrum and not at the band edges. We
note that the data pointβ(0) ≈ 0.95 exactly at the band centre is misleading because it
reflects rather extended linear combinations of the degenerate eigenstates in the band centre
instead of the confined eigenstates themselves. Except for the strongly localized states near
the band centre the participation numbers for most of the remaining states show a power
β ≈ 0.9, so these states can neither be labelled uniformly extended nor strongly localized.
In the following section, larger samples have been analysed to determine whether these
states display multifractal, i.e. self-similar behaviour.

On the other hand, the exponentβ for the eigenstates of the 3D AKL in figure 9 shows
a behaviour similar to the Anderson model. The states at the band edges are more strongly
localized than the remaining states around the band centre, which haveβ ≈ 1 like extended
states. We mention that the system sizes of the AKL withN 6 4000 are small compared
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Figure 9. The exponentβ for the scaling of the participation number in equation (3) as a
function of the energyE for the eigenstates of the AKL with open boundary conditions. The
right-hand scale gives the exponentα of the power-law decay of the wave functions according to
equation (5). The participation numbers have been averaged over an energy interval1E = 0.15
for 25 systems with 400< N < 4000.

to the 2D case. A power-law localization for these extended states cannot be concluded.
The multifractal analysis of the eigenstates for periodic approximants up to(21, 13) of the
AKL in the following section also shows a reduced localization of the states at the band
edges and a barely visible multifractal structure of the wave functions.

4.2. Structural entropy

Besides the participation numberP or the participation ratiop = P/N we will use the
Shannon or information entropy [23, 24] as a characteristic quantity for the description of
the localization:

S = −
N∑
n=1

|ψnj (x)|2ln|ψnj (x)|2. (6)

The Shannon entropy can be interpreted as a sum of two physical terms [23]: the extension
entropySext = lnP , and the deviation from this value which one may call the structural
entropy

Sstr = S − lnP. (7)

While the extension entropy reflects the spatial extent of an eigenstate, because the
participation ratiop is a measure of the spatial portion of the system to which a wave
function extends, the structural entropySstr contributes an additional amount of information
entropy characterizing the shape and thus the structural properties of the distribution of the
wave function. It has been shown [23] that the allowed ranges forp andSstr are 06 p 6 1
and 06 Sstr 6 − lnp. Both quantities,p andSstr, are completely determined by a given
decay form of the wave function. A further result [23] is that a wave function composed
of several identical (or not considerably different) substructures or peaks yields the same
(p, Sstr) values as one composed of a single substructure alone. Plotting the(p, Sstr) curves
calculated for various decay forms in a localization diagram and comparing them with the
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Figure 10. The structural entropySstr versus the participation ratiop for various periodic
approximants of the PL withW = 10−5 (symbols), compared with the respective dependences
(dashed lines) for wave functions of different shape. For the smallest approximant (×) all of the
eigenstates have been included in the plot; for the larger approximants only some representative
states have been computed. The dotted line reflects the boundarySstr = − lnp of allowed
values. The full line is given by equation (8).

values obtained for a given wave function one may derive conclusions on the shape of the
states. However, it is unfortunately not possible to decide with certainty on the suitability
of a particular decay form from computed values of(p, Sstr), because different functional
forms of the wave function can yield the same(p, Sstr).

In figures 10 and 11 we have plotted the structural entropy as a function of the
participation ratio for the PL and AKL. One can clearly observe a strong correlation of
the values ofSstr andp. In both cases the observedSstr(p) can be fairly well reproduced
by a decay function with a short-range exponential and a power-law tail with superimposed
oscillations:

ρ(r) = |9(r)|2 =


exp(−r) for r < R0

A
cos(cr + φ)+ 1

r2α
for r > R0

(8)

with R0 = 0.75, c = 10, α = 0.65 in 2D andR0 = 2.5, c = 25, α = 0.8 in 3D (see
the full lines in figures 10 and 11). The parametersA andφ are determined according to
the requirement thatρ(r) and dρ(r)/dr should be continuous atr = R0. In figure 10 the
states of the PL with participation ratiosp < 0.05 cannot be described even approximately
by equation (8). These states correspond to the spatially confined states in the band centre
which would be exactly degenerate without energetic disorder. The behaviour of these states
in the case of small energetic disorder is explained in detail elsewhere [14]. In figure 11
only one data point forE = 0 deviates significantly from the rest of the data. This is not
surprising in view of the fact that only two degenerate states exist in the band centre for
the approximant (5, 3) of the AKL. We note that the exponentsα of the power-law tail in
equation (8) are somewhat larger than those derived from the participation number, equation
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Figure 11. The structural entropySstr versus the participation ratiop for various periodic
approximants of the AKL withW = 10−5 (symbols), compared with the respective dependences
(dashed lines) for wave functions of different shape. For the smallest approximant (×) all of the
eigenstates have been included in the plot; for the larger approximants only some representative
states have been computed. The dotted line reflects the boundarySstr = − lnp of allowed
values. The full line is given by equation (8).

(5). This means that the analysis of the Shannon entropy suggests a stronger localization.
However, it must be pointed out that the data points in figures 10 and 11 may be better
reproduced by some other decay, different from equation (8), although we did not find any
better functional form. But therefore one should not place too much reliance on power
law (8).

5. Multifractal analysis

The multifractal behaviour of wave functions can be comprehensively characterized by the
singularity spectrum, which is commonly used to describe multifractal entities [25]. For the
computation of the singularity spectrum we use the standard box-counting method [25–27].
First we divide the system withN sites intoNδ = δ−D boxesBk of linear sizeδ, the ratio
of the box size and the system size. The probability of finding an electron in thekth box
Bk is given byµk(δ) =

∑
n∈Bk |ψnj |2 for k = 1, . . . , Nδ. The normalizedqth moment of

this probability

µk(q, δ) = µqk (δ)
/( Nδ∑

l=1

µ
q

l (δ)

)

constitutes a measure. From this probability measure one obtains the Lipschitz–Hölder
exponent or singularity strengthα and the corresponding fractal dimensionf of an
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Figure 12. Singularity spectra for various eigenstates in periodic approximants of the PL with
W = 10−5 at different energiesE. The symbols indicateα(q) andf (q) for integer values ofq
in the parametric representation, equation (9).

eigenstate:

α(q) = lim
δ→0

[( Nδ∑
k=1

µk(q, δ) lnµk(1, δ)

)/
ln δ

]

f (q) = lim
δ→0

[( Nδ∑
k=1

µk(q, δ) lnµk(q, δ)

)/
ln δ

] (9)

which yields the characteristic singularity spectrumf (α) in a parametric representation.
Hereby, the singularity strength of a boxk is defined byµk ∝ δαk , and the subset of all
boxes with the sameα forms a fractal set with the number of these boxesN(α) ∝ δ−f (α).
It is by no means obvious that the data fulfil equation (9). We have carefully checked that∑

k µk lnµk depends linearly on lnδ and determinedα andf by linear regression. From
these results one can also obtain the generalized dimensions

D(q) = f (q)− qα(q)
1− q . (10)
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Figure 13. The dependence of the behaviour ofα(0) andα(1) for various eigenstates in periodic
approximants of the AKL (W = 10−5) on the energyE. For all energies,α(0) > 3 andα(1) 6 3.

Figure 14. The fractal dimensiond∗ = βD calculated from figure 8 and the correlation
dimensionD(2) for the eigenstates in periodic approximants of the PL withW = 10−5 as a
function of the energyE.

We note thatD(1) = α(1) = f (1) denotes the information dimension and reflects the scaling
of the Shannon entropy (6). The results of the multifractal analysis, namely the singularity
spectra of the eigenstates for different approximants of the PL and various energies, are
presented in figure 12. Two characteristic values,α(0) andα(1), are shown as a function
of the energy for the eigenstates of the approximants of an AKL in figure 13.

The observed independence of the singularity spectra from the system size in figure 12 is
an indication that the approximants of the PL used are big enough to avoid finite-size effects.
According to the results of Naumiset al [9] the eigenstates should show an increasingly
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strong multifractal behaviour on changing the energy from the band edges to the band
centre. This is corroborated in figure 12, where the singularity spectra become wider with
increasing energy.

The dashed lines in figure 13 correspond to the critical values ofαc(0) = 4 andαc(1) = 2
at the metal–insulator transition in the 3D Anderson model of localization [28], i.e. they can
be used to distinguish extended and localized states. Obviously the AKL states show the
behaviour of extended states, and the observed close vicinity of the data toα(0) = α(1) = 3
prevents us from proposing a significant multifractal structure of the wave function.

For multifractal wave functions the correlation dimensionD(2) can be related [19] to
the fractal dimensiond∗ of the participation ratio given by the exponentβ in equation (3):

d∗ = Dβ. (11)

In figures 14 and 15 the fractal dimension calculated from the values of figures 8 and
9 is compared with the correlation dimension for various eigenstates of the 2D PL and
the 3D AKL. While in the case of the PL there is a very good agreement of the two
dimensions for all energies, in the case of the AKL the agreement is good only for|E| < 5,
indicating extended states, while the correlation dimensionD(2) is much bigger than the
fractal dimensiond∗ for all states with energyE < −5. This is clearly an effect of the
comparable small systems (N < 4000) for the calculation ofβ in figure 9. As mentioned
above, the numerical multifractal analysis shows no indication for multifractal eigenstates
in the AKL for any energy.

Figure 15. The fractal dimensiond∗ = βD calculated from figure 9 and the correlation
dimensionD(2) for the eigenstates in periodic approximants of the AKL withW = 10−5 as a
function of the energyE.

6. Concluding remarks

In this paper a detailed numerical examination of the wave functions in the vertex model of
two- and three-dimensional quasiperiodic lattices was presented. We used the dependence
of the participation number on the system size and the structural entropy as a function of the
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participation ratio to describe the spatial decay of the wave functions and detected a power-
law tail with superimposed strong oscillations. With a standard box-counting method we
analysed the multifractal properties of the wave functions. In the PL most eigenstates, except
the spatially confined states in the band centre, show a power-law localization and a distinct
multifractal behaviour depending on the energy. In the AKL a power-law decay of the shape
of the wave functions cannot be concluded from the analysis of the participation number,
and the eigenstates show no visible multifractal properties. Comparing the results for the
exponentβ in equation (3) and the correlation dimensionD(2), there is no indication that
the lattices investigated are still too small to find a marked power-law decay or a multifractal
structure. However, due to normalization constraints on the wave functions, a power law
with a weaker decay than given by the exponentα = D/4 cannot be detected by analysing
the participation number or the Shannon entropy. Therefore we can still not exclude the
possibility of a weak power-law localization of the eigenstates of the AKL. Our results
suggest a tendency towards localization in the tails of the DOS, where we have observed
distinct gaps in the spectrum, which may be interpreted as an indication of critical states.
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